Integrative analysis of ‘-omics’ data using penalty functions
نویسندگان
چکیده
منابع مشابه
MODMatcher: Multi-Omics Data Matcher for Integrative Genomic Analysis
Errors in sample annotation or labeling often occur in large-scale genetic or genomic studies and are difficult to avoid completely during data generation and management. For integrative genomic studies, it is critical to identify and correct these errors. Different types of genetic and genomic data are inter-connected by cis-regulations. On that basis, we developed a computational approach, Mu...
متن کاملIPF-LASSO: Integrative L 1-Penalized Regression with Penalty Factors for Prediction Based on Multi-Omics Data
As modern biotechnologies advance, it has become increasingly frequent that different modalities of high-dimensional molecular data (termed "omics" data in this paper), such as gene expression, methylation, and copy number, are collected from the same patient cohort to predict the clinical outcome. While prediction based on omics data has been widely studied in the last fifteen years, little ha...
متن کاملSparse Integrative Clustering of Multiple Omics Data Sets.
High resolution microarrays and second-generation sequencing platforms are powerful tools to investigate genome-wide alterations in DNA copy number, methylation, and gene expression associated with a disease. An integrated genomic profiling approach measuring multiple omics data types simultaneously in the same set of biological samples would render an integrated data resolution that would not ...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولMultiple Co-inertia Analysis of Multiple OMICS Data using omicade4
Multivariate approaches have been applied successfully in the analysis of high throughput ”omics”data. Principal component analysis (PCA) has been shown to be useful in exploratory analysis of linear trends in biological data [1]. Culhane and colleagues employed a two table coupling method (co-inertia analysis, CIA) to examine covariant gene expression patterns between microarray datasets from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Wiley Interdisciplinary Reviews: Computational Statistics
سال: 2014
ISSN: 1939-5108
DOI: 10.1002/wics.1322